Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pathogens ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-2254950

ABSTRACT

To prevent diarrhea in suckling piglets infected by porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PED) vaccines are administered mainly through intramuscular (IM) or oral routes. We found that growing pigs vaccinated with an inactivated PEDV vaccine via the intradermal (ID) route had higher neutralizing antibody titers and cytokine (IFN-γ, IL-4, and IL-10) levels than non-vaccinated pigs. In addition, suckling piglets acquired lactogenic immunity from pregnant sows inoculated with an ID PED vaccine. We evaluated the efficacy of vaccination via this route, along with subsequent protection against virulent PEDV. At six days post-challenge, the survival rate of suckling piglets exposed to virulent PEDV was 70% for the ID group and 0% for the mock group (no vaccine). At necropsy, villi length in the duodenum and ileum of piglets with lactogenic immunity provided by ID-vaccinated sows proved to be significant (p < 0.05) when compared with those in piglets from mock group sows. Thus, vaccination using an inactivated PED vaccine via the ID route provides partial protection against infection by virulent PEDV.

2.
Animals (Basel) ; 12(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2199666

ABSTRACT

The purpose of this study was to investigate annual changes in BoRVA strains by examining the VP4 and VP7 genes of rotaviruses in Korean calves. Between 2014 and 2018, 35 out of 138 samples of calf diarrhea feces collected nationwide were positive for BoRVA. Further genetic characterization of the VP7 and VP4 genes of 35 BoRVA isolates identified three different G-genotypes (G6, G8, and G10) and two different P genotypes (P[5] and P[11]). The G6 genotype was most common (94.3%) in BoRVA-positive calves, followed by the P[5] genotype (82.9%). Four genotypes comprised combinations of VP4 and VP7: 80% were G6P[5], 14.2% were G6P[11], 2.9% were G8P[5], and 2.9% were G10P[11]. Susceptibility to infection was highest in calves aged < 10 days (35%) and lowest in calves aged 30−50 days (15.4%). The data presented herein suggest that the G6P[5] genotype is the main causative agent of diarrhea in Korean calves. In addition, it is predicted that G6P[5] will continue to act as a major cause of diarrhea in Korean calves.

3.
Viruses ; 14(11)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090362

ABSTRACT

Bovine coronavirus (BCoV) causes severe diarrhea in neonatal calves, winter dysentery in adult cattle, and respiratory disease in feedlot cattle, resulting in economic losses. A total of 16/140 calf diarrheic feces samples collected in South Korea between 2017 and 2018 were positive for BCoV. Phylogenetic analysis of the complete spike and hemagglutinin/esterase genes revealed that the 16 Korean BCoV strains belonged to group GIIa along with Korean strains isolated after 2000, whereas Korean BCoV strains isolated before 2000 belonged to group GI. Mice and goats inoculated with an inactivated KBR-1 strain (isolated from this study) generated higher antibody titers (96 ± 13.49 and 73 ± 13.49, respectively) when mixed with the Montanide01 adjuvant than when mixed with the Carbopol or IMS1313 adjuvants. Viral antigens were detected in the large intestine, jejunum, and ileum of calves inoculated with inactivated KBR-1 vaccine (104.0 TCID50/mL) at 14 days of post-challenge (DPC). However, no viral antigens were detected in calves vaccinated with a higher dose of inactivated KBR-1 strain (106.0 TCID50/mL) at 14 DPC, and they had high antibody titers and stable diarrhea scores. Currently, the group GIIa is prevalent in cows in South Korea, and although further research is needed in the future, the recently isolated KBR-1 strain has potential value as a new vaccine candidate.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Female , Cattle , Animals , Mice , Phylogeny , Feces , Diarrhea/veterinary , Antigens, Viral , Republic of Korea
4.
Sci Rep ; 11(1): 20638, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1475483

ABSTRACT

The COVID-19 pandemic is an unprecedented threat to humanity that has provoked global health concerns. Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors enabling treatment decisions have not been well documented. Accurately predicting the progression of the disease would aid in appropriate patient categorization and thus help determine the best treatment option. Here, we have introduced a proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) to identify the serum proteins that are closely associated with COVID-19 prognosis. Twenty-seven proteins were differentially expressed between severely ill COVID-19 patients with an adverse or favorable prognosis. Ingenuity Pathway Analysis revealed that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic inflammatory response and in cardiovascular disorders. We further evaluated practical predictors of the clinical prognosis of severe COVID-19 patients. Subsequent ELISA assays revealed that CHI3L1 and IGFALS may serve as highly sensitive prognostic markers. Our findings can help formulate a diagnostic approach for accurately identifying COVID-19 patients with severe disease and for providing appropriate treatment based on their predicted prognosis.


Subject(s)
Biomarkers/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Gene Expression Profiling , Proteomics/methods , Chitinase-3-Like Protein 1/metabolism , Enzyme-Linked Immunosorbent Assay , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Humans , Inflammation , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Prognosis , SARS-CoV-2 , Tumor Necrosis Factor-alpha/biosynthesis , Virus Diseases
5.
Vet Microbiol ; 242: 108604, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-2324

ABSTRACT

Here, we examined the efficacy of are combinant subunit antigen-based oral vaccine for preventing porcine epidemic diarrhea virus (PEDV). First, we generated a soluble recombinant partial spike S1 protein (aP2) from PEDV in E. coli and then evaluated the utility of aP2 subunit vaccine-loaded hydroxypropyl methylcellulose phthalate microspheres (HPMCP) and RANKL-secreting L. lactis (LLRANKL) as a candidate oral vaccine in pregnant sows. Pregnant sows were vaccinated twice (with a 2 week interval between doses) at 4 weeks before farrowing. Titers of virus-specific IgA antibodies in colostrum, and neutralizing antibodies in serum, of sows vaccinated with HPMCP (aP2) plus LL RANKL increased significantly at 4 weeks post-first vaccination. Furthermore, the survival rate of newborn suckling piglets delivered by sows vaccinated with HPMCP (aP2) plus LL RANKL was similar to that of piglets delivered by sows vaccinated with a commercial killed porcine epidemic diarrhea virus (PED) vaccine. The South Korean government promotes a PED vaccine program (live-killed-killed) to increase the titers of IgA and IgG antibodies in pregnant sows and prevent PEDV. The oral vaccine strategy described herein, which is based on a safe and efficient recombinant subunit antigen, is an alternative PED vaccination strategy that could replace the traditional strategy, which relies on attenuated live oral vaccines or artificial infection with virulent PEDV.


Subject(s)
Coronavirus Infections/veterinary , Lactobacillus/immunology , Methylcellulose/analogs & derivatives , RANK Ligand/immunology , Swine Diseases/prevention & control , Viral Vaccines/immunology , Administration, Oral , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Colostrum/immunology , Coronavirus Infections/prevention & control , Female , Methylcellulose/administration & dosage , Microspheres , Porcine epidemic diarrhea virus , Pregnancy , RANK Ligand/administration & dosage , Swine , Swine Diseases/virology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL